
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Peel Stress Distributions between Adherends with Varying Curvature
Mismatch
Todd A. Corsona; Yeh-Hung Laia; David A. Dillarda

a Engineering Science & Mechanics Department, Virginia Polytechnic Institute, Blacksburg, Virginia,
U.S.A.

To cite this Article Corson, Todd A. , Lai, Yeh-Hung and Dillard, David A.(1990) 'Peel Stress Distributions between
Adherends with Varying Curvature Mismatch', The Journal of Adhesion, 33: 1, 107 — 122
To link to this Article: DOI: 10.1080/00218469008030420
URL: http://dx.doi.org/10.1080/00218469008030420

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218469008030420
http://www.informaworld.com/terms-and-conditions-of-access.pdf


1. Adhesion, 1990, Vol. 33, pp. 107-122 
Reprints available directly from the publisher 
Photocopying permitted by license only 
@ 1990 Gordon and Breach Science Publishers S. A. 
Printed in the United Kingdom 

Peel Stress Distributions between 
Adherends with Varying Curvature 
Mismatcht 

TODD A. CORSON, YEH-HUNG IAI and DAVID A. DILLARDS 

Engineering Science 81 Mechenics Department, Virginia Polytechnic Institute, Blacksburg, 
Virginia 24061, U.S.A. 

(Received December 18, 1989; in final form July 30, 1990) 

Previously-derived, closed-form solutions for the residual peel stresses developed between adherends 
with a slight but constant curvature mismatch are extended to the cases of two or more discrete 
m a t u r e s  and continuously varying curvatures. This beam on elastic foundation solution is now used 
to predict, for example, the peel stresses which develop when a molding strip is bonded to conform to 
a substrate with varying curvatures. Diagrams of typical stress distributions are given along with plots 
which allow the designer to estimate or minimize the resulting peel stresses for specific applications. 

KEY WORDS Beam on elastic foundation; curved adherends; molding strips; adhesive peel stresses 

INTRODUCTION 

When two adherends with an initial curvature mismatch are forced to conform to 
one another and then bonded with an adhesive layer, residual peel stresses result. 
Common examples from the automotive, aircraft, and construction industries 
include cases where flat molding strips are bonded to curved surfaces and where 
curved strips are forced onto flat substrates. The integrity and durability of these 
bonded structures will depend on the fracture resistance of the material system, 
and on the magnitude of the residual stresses. When bonding such components, 
an important design consideration should be the peel stresses which are induced 
along the bond due to the mismatch in curvature. This paper examines the stress 
distributions which result when there are discrete or continuously varying changes 
in the curvature mismatch between the adherends. The techniques developed 
herein are extensions of our earlier work' which addressed only the case of a 
constant mismatch in curvature. A closed-form solution for discrete curvature 

t Presented at the Thirteenth Annual Meeting of The Adhesion Society, Inc., Savannah, Georgia, 

$ Corresponding author. 
U.S.A., February 19-21, 1990. 

107 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



108 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

changes is presented herein for the case of two curvatures, and the development 
procedure is described for cases of more than two curvatures. One of the design 
uses of the technique is to find the optimal length to extend a molding strip past a 
curved surface onto a flat surface to reduce the likelihood of debonding. Analyses 
of this and other cases will be presented in the sample graphs section. In addition, 
.the governing differential equation for cases where there is a continuously varying 
curvature mismatch is also presented, The closed form solution for the case of a 
sinusoidally varying mismatch is presented, and the process of using Fourier 
series expansions then to obtain the solution to arbitrary problems is discussed. 

DEVELOPMENT OF BASIC FORMULATION 

In order to develop the mathematical basis for the current method, it is 
advantageous to enhance the formulation and rigor of the approach we used in 
our previous technique. Some of the development will be identical to that used in 
Ref. 1, and the interested reader should refer to it for additional details. 

The original technique was developed around the typical geometry shown in 
Figure 1 where an initially curved strip is bonded to a flat, rigid surface. (Figure 1 
illustrates a positive curvature mismatch). The adhesive is assumed to be linearly 
elastic and the solution is based on a beam on elastic foundation analysis 
discussed in detail by HetCnyi.' The bending stiffness of the strip is constant and 
is denoted by EZ, where E is the elastic modulus of the material and Z is the 

I 1 

FLEXIBLE 
ADHEREND 

ADHESIVE 

RIGID 
SUBSTRATE - BEFORE BONDING 

AFTER BONDING 

u w  
FIGURE 1 Sign conventions and dimensions for the analysis. 
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ADHERENDS WITH CURVATURE MISMATCH 109 

moment of inertia of the cross-section. The modulus of the adhesive is denoted by 
E,, the thickness of the adhesive layer is h, and the width of the adhesive strip is 
w. The shear and bending moment conventions are as shown in Figure 1. 

In general, the slopes involved in bending strips around curved substrates are 
not necessarily small, so in this paper we choose a curvilinear coordinate system 
in such a way that the instantaneous x-axis always coincides with the surface of 
the rigid substrate, and the y-axis is always perpendicular to  this surface. A 
second curvilinear coordinate system is defined with the x ,  and y, axes parallel 
and perpendicular to the flexible adherend, as shown in Figure 2. We will require 
that the thickness of the flexible adherend is very small in comparison with the 
radius of curvature at every point along each surface so that simple beam theory 
will be applicable, but we make no other restrictions on the curvatures of the 
members. For convenience, we assume that the substrate is relatively rigid with 
respect to the strip, thus allowing the x and y axes to remain the same even after 
bonding has occurred. (If both adherends are flexible, the x and y axes should be 
selected so that they coincide with the deformed surface, and the effective E l  of 
the system is the inverse of the sum of the individual compliances.') The net 
curvature mismatch may be expressed as: 

where pa and pb are the individual radii of curvatures of the two adherends, and 
the net curvature mismatch is the inverse of the effective (mismatched) radius of 
curvature, po. 

We now elastically conform the strip to  the substrate and assume it may be held 
in place by an adhesive layer which is also thin compared with the radii of 
curvature. Although the original slopes of strip and substrate may have been 
arbitrarily large, the choice of a curvilinear coordinate system allows us to 
assume, reasonably, that the slopes of the deformed strip will always be small 
with respect to the x-y coordinate system. This allows us now accurately to  

I RIGID SUBSTRATE I 
FIGURE 2 Curvilinear coordinate system used for the analysis of varying adherend curvature 
mismatch. 
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110 T. A. CORSON, Y.-H. LA1 AND D. A. DLLARD 

replace 
1 1 M  -__-_ 
P PO-EI 

where M is the applied bending moment, p is the net radius of curvature of the 
deformed adherend, and po is the stress free radius of curvature of the adherend, 
with 

Denoting the peel stress by a ( x ) ,  and assuming as noted earlier that the 
adhesive is linear elastic, we obtain: 

Using the elementary mechanics principle that the second derivative of the 
moment is the distributed force function, and substituting in Eq. ( 4 ) ,  we have: 

d 2 M ( x )  Eaw -- 
&2 - - ,YW 

Differentiating Eq. (3) twice and substituting in Eq. (9, we obtain: 

d4Y d4yo -+4L4y =- 
dr4 dX4 

where: 

If the curvature mismatch is constant, the right hand side of Eq. (6) vanishes 
and the solution to this homogeneous fourth order equation is the standard beam 
on elastic foundation expression: 

y ( x )  = ebh(A cos Ax + B sin Ax) + ek(C cos Ax + D sin Ax) 

M (  -L)  = M ( L )  = V (  - L )  = V ( L )  = 0 

(8) 

(9) 

which is subject to the boundary conditions of no shear or moment at the ends: 

The coefficients can then be determined, and a closed form solution for peel 
stresses is obtained. Details for this derivation can be found in any advanced 
mechanics of materials text, such as Ref. 3, and specific information and graphs 
can be found once again in the previous paper.' 

In applying these formulas to actual joints, it is useful to identify the functional 
dependency of the maximum peel stresses on the geometrical and material 
parameters. It may be easily shown that the maximum peel stress is proportional 
to (Ea)IR, (E)ln, and (I)1R,  and is inversely proportional to (h)'", (w) lR,  and p .  
As pointed out by Reeves: doubling the width of the adhesive layer does not 
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ADHERENDS WlTH CURVATURE MISMATCH 111 

halve the peel stresses. The radicals on each of the quantities reflect the fact that 
altering the relative stiffness of the adhesive (by changing the geometry or 
material properties) will affect the stress distribution. Thus, increasing the 
adhesive width results in an increased area to share the load, but also draws 
higher loads because of the increased effective stiffness. Indeed, the most efficient 
means of reducing stresses would be preforming of the adherends to reduce the 
cuvature mismatch. 

EXTENSION OF TECHNIQUE TO TWO CURVATURES 

Using the general solution to the governing differential equation, we now extend 
the technique to two (or more) curvatures. Figure 3 shows the geometry we will 
use to develop our extended technique. Since the strip is composed of two 
curvatures, we will use one equation of the same form as Eq. (8) for each of its 
two sections as follows: 

y l (x )  = e-k(Al cos Ax + B ,  sin Ax) + eZ”(C, cos Ax + D, sin Ax) (loa) 

y2(x) = ebk(A2 cos Ax + B2 sin Ax) + eZ”(C2 cos Ax + 4 sin Ax) (lob) 

We now must solve for eight coefficients instead of four. We still have the four 
boundary conditions from the previous method (shear and moment equal zero at 

FIGURE 3 Geometry for the special case of two discrete curvatures. 
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112 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

ends). If we consider the origin to be at the change in curvature, these become: 

M ( - l l )  = M(12) = V ( - l l )  = V(12) = 0 (11) 
which translate to: 

1 1 

P1 P 2  
y’l( -1,) = - Y 8 2 )  = - 

yf’l(-l l)  = 0 yf;(f2)  = 0 
(y”  = l / p  because when the moment is equal to zero, the curvature mismatch is 
equal to p.) 

Now we must determine four more boundary conditions. These conditions can 
be obtained by matching displacement, slope, moment, and shear at the 
intersection of the two curvatures. We obtain: 

1 1 
P1 P2 

y‘;(O) - - = y$(O) - - yYf0) = y!gO) 

thus fulfilling our need for eight boundary conditions. It is now possible to solve 
for the coefficients in Eqs. (10). 

After close inspection one will find that solving for the coefficients by hand 
would be quite a task. Fortunately, computer programs have been developed for 
such occasions, and one of these programs was found invaluable in developing a 
closed-form solution for the two-curvature case. The program used was a 
symbolic algebra manipulator called MACSYMA.’ The equations and boundary 
conditions were entered into the program, and the program solved for the eight 
coefficients. Very complicated expressions were obtained, were simplified using a 
few of the program’s built in simplifying functions, and finally were reduced by 
hand into a useable form. The coefficients are presented in Appendix A. 

If we examine these coefficients we see that we have terms inversely 
proportional to p 1  and p 2  and proportional to the difference over the product of 
the two curvatures. If one of the sections is flat (infinite curvature) or has a much 
larger radius of curvature than the other section, one of the terms drops out, and 
the term dependent on the difference becomes dependent only on the tightest 
curvature (smallest radius). 

The first case we consider is to examine methods for reducing the peak peel 
stresses which develop due to a curvature mismatch. It is known that, for a 
constant curvature mismatch, the only peel stresses are those which develop 
locally at each end of the strip.’ Presumably, these high peel stress concentrations 
could be reduced if the adherend curvature mismatch were reduced or eliminated 
at the very ends of the bondline. Figure 4 shows typical adhesive deformation 
distributions which are obtained when the curvature mismatch is eliminated for 
several different lengths. The data were obtained from the closed form solution 
where the curved length to the left is very long, and the zero mismatch region 
takes on increasing lengths. As the zero mismatch region vanishes, one regains 
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FIGURE 4 Deformation of the adhesive layer near the end of a constant curvature adherend with 
and without various length zero curvature mismatch terminal zones. (The curvature mismatch to the 
left of the origin is p, , and the curvature mismatch to the right of the origin is zero.) 
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Maximum deformations in the adhesive layer as a functioii of length of a zero mismatch 
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114 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

the high stress concentrations obtained in Ref. 1. As the length of the zero 
mismatch region becomes large, a stable stress distribution which produces the 
couple needed to balance out the change in moment is produced. This 
configuration results in considerably smaller tensile stresses than the case where 
the curvature mismatch extends to the end of the adherend, and can also place 
the tip region in compression. Figure 5 is a summary graph of the tip and 
maximum displacements for various zero mismatch strip lengths. From a design 
standpoint, we note that if the curvature mismatch is eliminated over a region 
l2 = n/23c, the maximum peel stresses can be reduced to only 20% of the case 
with no zero mismatch terminal region. We can see the best length for a zero 
mismatch terminal region from a design standpoint is n / A ,  since this gives us a 
maximum stress close to (approx. 2.7% greater than) the smallest obtainable, and 
the largest compressive tip stress. In this way, if any stresses are induced by 
moisture or temperature, we can still be fairly certain of a compressive stress at 
the tip of the bond, thus reducing the likelihood of peel initiation. 

Figures 6 and 7 examine the stresses induced at the junction of two infinitely 
long sections of different curvatures. In order to normalize the results, we assume 
p1 has the smaller radius of curvature. We obtain a family of graphs dependent 
on the ratio of the two curvatures as shown in Figure 6. The graphs is symmetrical 
about both axes, and is equivalent to a flat beam on an elastic foundation with a 
moment (equal to that needed to offset the change in curvature) applied at the 
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0.35 I 1 
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0.00 0'05 a 
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CURVATURE RATIO: A /PI 
FIGURE 7 Maximum displacement induced by a sudden curvature change. 

center. Figure 7 is a graph of the maximum displacements for various curvature 
ratios. For the case of a negative curvature ratio (the curvatures are in opposite 
directions) we simply note that a radius of --03 is equivalent to 03. Then we add 
the stresses we would obtain from the cases of p1 to 03, and -03 to p2 (assuming 
p2 is the negative curvature). The tensile stress will always be on the side with the 
most negative curvature (flattest side if curvatures are of the same sign). It is also 
of interest to note that the maximum stresses are at a distance of n/4A from the 
center. 

Note: The graphs are given in terms of displacement in order to normalize the 
results. If stress is needed, simply multiply the function by the E,/h value for the 
specific problem. 

TECHNIQUE FOR CONTINUOUSLY VARYING CURVATURES 

In order to consider cases where the curvature varies continuously, we recognize 
that the governing differential equation (Eq. (6)) may become non-homogenous. 
If curvature remained constant, we differentiated twice and had a homogeneous 
equation. If l / p ( x )  vanes linearly, we have a continuously varying curvature, but 
note that after differentiating twice, we retain a homogeneous equation. This 
implies that for long strips with a curvature which varies linearly, there will be 
stresses near the ends. There will be no intermediate peel stresses arising because 
the solution remains homogeneous. 
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116 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

If the curvature varies in a more complex manner, we obtain a non- 
homogeneous differential equation: 

y + 4A4y = g! 
Solutions may be obtained by exact or numerical means 

As an example, we choose the case of adherends with 
functions. 

given by: 

and for illustration purposes will assume that the bond line 

(13) 
for arbitrary curvature 

a sinusoidal mismatch 

(14) 

is long and that we are 
well away from the- effects near the ends. We also assume that ;he amplitude of 
the sine wave is small in comparison with the period so that we can approximate 
the curvature by yg. Solving the governing differential equation, we obtain the 
peel stress distribution: 

where 

We note that for the case where A << 2n/f, the adherend is too stiff to conform 
to the closely spaced undulations, and 

implying that the deformation occurs in the adhesive rather than the adherends. 
If A >> 2n/f, the soft adherend readily conforms to the widely spaced undulations, 
and 

implying that the only stresses in the adhesive are those needed to induce the 
curvature. We note that these stresses decrease very rapidly as A or I are 
increased. For cases where A and 2n/1 have similar magnitudes, Eq. (16) gives the 
stress distribution. The behavior near the ends can easily be determined by 
combining the homogeneous and particular solutions and imposing four boundary 
conditions of shear forces and bending moments at the ends being zero. The 
solution procedure and results are given in Appendix C. 

TECHNIQUE FOR ADHERENDS OF ARBITRARY CURVATURES 

The solition of the case of adherends with sinusoidal mismatch discussed in the 
previous section can also be easily extended to the case of adherends with 
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ADHERENDS WITH CURVATURE MISMATCH 117 

arbitrary curvatures by expressing yo as a Fourier series: 

It should be noted that a finite number of terms could be chosen to approximate 
the initial mismatch of the adherends. The unknown coefficients A ,  B, C,  and D 
in Eq. (8) can be determined by summing up as many coefficients obtained for the 

cases of yOk(x )  = ak sin (ky)  - and y()k(x) = bk cos as chosen for Eq. 19. 

Once the unknown coefficients, A ,  B, C, and D, are determined, the deformed 
shape of adherend and stress distribution in the adhesive can be obtained. The 
advantage of this technique is that only four unknown coefficients need to be 
determined, which is easy and straightforward. It is only necessary to determine 
the initial adherend in the form of a Fourier series. 

SUMMARY AND CONCLUSIONS 

Residual peel stresses develop between adherends which initially have curvature 
mismatches. This paper and Ref. 1 have analyzed the distributions of these peel 
stresses which result when adherends with curvature mismatches are forced 
parallel and held together by an adhesive layer which was initially of uniform 
thickness. The analysis is based on an extension of the beam on elastic foundation 
solutions originally advanced by Winkler. For convenience, the analysis is based 
on the case of a flexible adherend bounded to a rigid substrate, although simple 
formulas are given in Ref. 1 to permit analysis when both adherends are flexible 
and curved. Slopes may be large prior to bonding, but radii of curvature must be 
large compared with the flexible adherend's height. Adherends and adhesive have 
been assumed to be elastic. Extensions of the solutions to cases with viscoelastic 
components are possible, but are complicated because of the multiple material 
system. Singularities at the bond termini have not been addressed, although the 
problem has also been couched from a fracture standpoint'. 

When the curvature mismatch is constant, and the bond length is long 

, exponentially decaying sinusoidal peel stress compared with -= - 

distributions occur at the ends of the adherends, but rapidly dissipate away from 
the ends. For long bonds it can be shown that the strain energy release rate is 
given simply by G = EI/2wp2,  and is independent of debond length, thereby 
holding promise as a self-loading, constant strain energy release rate fracture test. 
(Kannined has shown that applying a couple to a bonded beam produces a 
constant strain energy release rate for the case of an externally applied moment, 
whereas we obtain the same result for an internally applied moment.) For convex 
facing (positive curvature mismatch) adherends, the maximum tensile peel stress 
occurs at the bond termini, and ignoring localized singularities, has a value of 

1 4EIh 'I4 

A ( E , w )  
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118 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

1/24’. For concave facing (negative curvature mismatch) adherends, the 
maximum compressive stress has the same magnitude. The maximum tensile 
stress occurs inboard a distance of 16/212, and is only approximately 20% of the 
maximum tensile stress for the positive curvature case. When an adherend 
mismatch is unavoidable, the adherends should be placed with concave sides 
facing whenever possible to take advantage of the reduced tensile stresses and 
possible reduction of bond terminus singularity effects. 

The constant strain energy release rate property of this geometry implies that 
once a crack initiates, it will likely result in debonding of the majority of the bond 
length. It is only when the remaining bond length is smaller than approximately 
3/12 that the strain energy release rate drops and continued fracture may be 
stopped. This implies that curved adherend bonds will debond for large distances, 
but remain intact over a small region, as has been experimentally observed. 

For cases where the curvature changes abruptly from one constant curvature to 
a second constant curvature, peel stresses develop at this location to generate a 
couple which offsets the increased moment needed to deform the adherend. The 
magnitude of the peel stresses which result depends on the geometric and 
material properties of the system, and on the ratio of the radii of curvature. 
When the adherend extends only a short distance beyond the point of curvature 
change, the stress distributions of the end and junction can interfere with each 
other to produce distorted stress distributions. Improper dimensions can result in 
large tensile stresses, while dimensions can also be optimized to minimize the 
tensile stresses, or produce compressive stresses at the damage-prone ends. 

By solving a nonhomogeneous differential equation, peel stress distributions for 
adherends with continuously varying curvatures can be determined. The case of a 
sinusoidal mismatch has been analyzed to illustrate the approach. The solution 
procedure for this case has also been extended to problems which have the forms 
of Fourier series. Thus, the problem of an arbitrarily varying curvature can also 
be solved analytically. 
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APPENDIX A 

Coefficients for Two-Curvature Solution 
n, = All n2 = A12 

A = 4A2p1p2eh2+h1[2 cos(2n2 + 2n1) + 2 cosh(2n2 + 2nl) - 41 
A . Al = 2p1enz{sin(n2) + cos(n2) - eh2+h1[sin(n2 + 2nl) + cos(n2 + 2n1) 

+ 2 sin(n2)]} + 2p2eh2+"l{sin(2n2 + nl)  - cos(2n2 + nl)  
+ 2 sin(nl) - e2"2+h1[sin(nl) - cos(nl)]} + (p2 - pl)ehZ{co~(2n2) 
+ 1 - eh1[sin(2n2 + 2n1) + sin(2n2) - cos(2n2) + sin(2nl) 
+ cos(2nl)] - ehz+hl[cos(2nl) + I]} 

A A2= A * A1 
A - B1 = -2p2eh2+"l{~in(2n2 + n,) + cos(2n2 + nl)  - 2 cos(nl) 

+ eh2+h1[sin(n,) + cos(n,)]} + 2ple"z{sin(n2) - cos(n2) 
+ ehz+h1[sin(n2 + 2n,) - cos(n2 + 2n1) + 2 cos(n2)]} 
- (p2 - p l ) {  1 - ehz[sin(2n2) - 11 + e 2 n z + 2 n l [ ~ ~ ~ ( 2 n 2  + 2nl) 
- sin(2n2) - cos(2n2) - sin@,) + cos(2n,) - 21 - e4nz+hl[sin(2n,) + I]} 

A B2 = -2p2eh2+"l{~in(2n2 + nl) + cos(2n2 + nl )  - 2 cos(nl) 
+ ehz+2nl[sin(n1) + cos(nl)]} + 2ple"2{sin(n2) - cos(n2) 
+ e h z + 2 w  [sin(n2 + 2nJ - cos(n2 + 2nl) + 2 cos(n2)]} 
+ (p2 - pl)eh2{sin(2nz) - 1 + e2"l[cos(2n2 + 2n1) + sin(2n2) + cos(2n2) 
+ sin(2nl) - cos(2nl) - 21 + e2"z+2"1[sin(2nl) + 11 + eh2+4nl} 

+ cos(nl + 2n2) + 2 sin(nl)]} + 2plehl+nz{~in(2nl + n2) - cos(2n1 + n2) 
+ 2 sin(n2) - e2nl+h2[~in(n2) - cos(n2)]} + ( p l  - p2)e2"l{cos(2nl) 
+ 1 - ehz[sin(2nl + 2nz) + sin(2nl) - cos(2n1) + sin(2n2) 
+ cos(2n2)] - eh1+2n2[~~~(2n2)  + 11) 

A - C1 = 2p2e"~{sin(nl) + cos(n,) - e2n1+h2[sin(nl + 2n2) 

A * C2= A * C1 

A D1 = 2plehl+n2{~in(2nl + n2)  + cos(2n, + n2) - 2 cos(n,) 
+ ehl+2"2[~in(n2) + cos(n2)]} - 2p2en1{sin(nl) - cos(nl) 
+ ehl+2nz[sin(n1 + 2n2) - cos(n, + 2n2) + 2 cos(n,)]} 
- (p l  - p2)eh'{sin(2nl) - 1 + e2"2[cos(2nl + 2n2) + sin(2nl) + cos(2nl) 
+ sin(2n2) - cos(2n2) - 21 + e2n1+2nz[sin(2n2) + 11 + ehl+4n2} 

+ e2nl+2n2[sin(n2) + cos(n2)]} - 2p2en1{sin(n1) - cos(n,) 
+ ehI+2"2[sin(n1 + 2n2) - cos(nl + 2n2) + 2 cos(nl)]} 
+ ( p l  - p2){ 1 - e2"1[sin(2n1) - 11 + e2"1+hz[cos(2n, + 2n2) - sin(2nl) 
- cos(2n1) - sin(2n2) + cos(2n2) - 21 - e4n1+h2[sin(2n2) + I]} 

A . D2 = 2plehl+nz{sin(2nl + n2)  + cos(2n1 + n2) - 2 cos(n2) 
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Note: C1 can be obtained by switching the subscripts of all p's and n's in A l .  
Also, D1 is equal to -BZ with its subscripts switched, and D2 equals -B1 with its 
subscripts switched. This result parallels that in the first paper (Ref. l), where 
C = A  and D = -B. 

APPENDIX B 

Extension of Technique to Problems with Three of More Discrete Curvatures 

In the same way that we extended the one-curvature problem to two curvatures, 
we can extend the two-curvature problem to three or more discrete curvatures. 
Each time we add a new section to the problem, we need four more boundary 
conditions. We obtain these by matching the conditions at the new intersection. 
For each section of curvature, we have a different equation, and it is most 
convenient to have each section start at 0 and go to 1,. The conditions can be 
solved for a specific case using a computer, and the stresses can be graphed. For 
the n-curvature case, we have: 

Yl Y2 Yn-1 Yn 
P1 P2 . . *  Pn-1 Pn 

0 t o l ,  Oto 12 

End conditions: 
1 

P1 
y;'(O) = - 

Intersection conditions: 

Yl(11) = Y2(0) 
1 1 

P1 P2 
yY(11) - - = yj;(O) - - 

0 to 1,-1 0 to 1, 

y;'fO) = 0 

y;(ln) = 0 

Stress distributions for the multiple curvature case can also be obtained by 
combining sections of two curvatures when the separation between curvature 
changes is sufficiently long. A good approximation can be obtained when each 
curvature change is at least l O / A  units away from the ends and other changes. The 
graphs combined to form each section of this approximation should be two 
infinite lengths of the proper curvature, and the center of this graph should be 
used for the approximation. This section should extend half way from the change 
to the end or the next change. The ends should be taken from the end of an 
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ADHERENDS WITH CURVATURE MISMATCH 121 

infinite length of the corresponding curvature. This technique will give more 
accurate results as the distances between curvature changes increase, but the 
multiple curvature technique will be accurate in any case. 

APPENDIX C 

The Solution for the Case of Adherends with a Sinusoidal Mismatch 

From Eq. (14), the complete solution for the current case is given as: 

where 
Y (x) = YdX) + Y P W  

2nx 
sin I Y O  

yp(x) = 1 + 4A4[1/2nI4 

(Cl-1) 

(Cl-2) 

and yh(x) is the same as that in Eq. (8). 

linear equations are obtained: 
By imposing boundary conditions, M ( 0 )  = M ( L )  = V ( 0 )  = V ( L )  = 0, four 

where 

(C2-1) 

(C2-2) 

(C2-3) 

(C2-4) 

(C2-5) 

By representing the known quantities on the right hand side of Eqs. (C2-1) 
through (C2-4) as k l ,  k2 ,  k3,  and k4, and solving this system of four linear 
simultaneous equations, we can obtain A, B, C, and D as follows: 

A = - {e2"[k ( sin(2AL) + 1) + kIA(cos(2AL) - sin(2AL))I 

+ [(3k2A - 2k4)e32L - k2AeAL] sin AL + [(k2A + k4)e3'= 
+ ( -k2A - k4)eAL] cos AL + (-k,A - k3)e4"}/@, (C3-1) 

B = {e2"[k1A(-sin(2ilL) - cos(2AL) + 2) + k3(cos(2Al) - l)]  
+ [(k2A - k4)e32L + (k2A + k4)e"] sin A L  
+ [k2A(e3AL - eAL)] cos AL - k,Ae4"]}/@, (C3-2) 
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122 T. A. CORSON, Y.-H. LA1 AND D. A. DILLARD 

C = - {e2"[klA(sin(2AL) + cos(2I.L)) + k3(cos(2AL) - l)]  
+ [k2Ae3AL + (-3kJ - 2k4)eAL] sin AL 
+ [-(k2A - k4)e32L + (k2A - k4)eAL] cos AL - klA + k 3 } / @ ,  

D = {e2"[k1A(-sin(2AL) + cos(2AL) - 2) + k3(cos(2AL) - l)] 
+ [(k2A - k4)e3AL + (k2A + k4)eAL] sin AL 
+ [k2A(e31L - eAL)] cos AL + klA}/@, 

where 
@ = 2A3[e2y2 cos(2AL) - 4) + e4AL + I]. 

(C3-3) 

(C3-4) 

(C3-5) 

By substituting the above coefficients back into Eq. (Cl-1) and Eq. (4), we 
could obtain the deformed adherend and stress distribution in the adhesive. 
It should be noted that for an initial adherend mismatch obeying a cosin func- 

tion, cos - , the solution could be obtained by replacing "'"(7) with 

cos(2") in Eqs. (Cl-2) and (C2-5). In addition, in order to calculate A, B, C, 

2nx (23 
\ 1 /  

for an aherend with arbitrary initial shape 
2nx 

1 
expressed as a Fourier series, we could simply replace - in Eqs. (C2-1) 

knx 
L 

and (C2-5) with - . 
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